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STATISTICAL CALCULATION OF THE VISCOSITY
COEFFICIENTS OF THE ORDERED PHASES
OF DNA MOLECULES

V. B. Nemtsov and A. V. Shirko UDC 536.758

Statistical calculation of the viscosity coefficients of the ordered phases of DNA molecules is performed. As a
starting point of calculation, an expression which describes the tensor of viscous stresse is used, whereas cal-
culations of time correlation functions that determine kinetic coefficients are performed with the aid of a re-
laxation equation which characterizes the evolution of the tensor order parameter.

Physically, the ordered phases revealed experimentally in the DNA molecule are interesting biological objects
[1]. They represent concentrated solutions of the fragments of DNA molecules with the length close to their persistent
length in ionic media formed by aqueous salt solutions. The latter possess a liquid-crystalline orientational order re-
sponsible for their anisotropy.

Orientational Order and Its Kinetics for the Ordered DNA Molecules. Since condensed states of the en-
sembles of DNA molecules have a liquid-crystalline orientational order, its description in both nematic and cholesteric
liquid crystals should be made using an average value of the dynamic density of the tensor order parameter in the
form of a spurless second-order tensor (see. e.g., [2]):

Dij (x) = 
1
2

 ∑ 

ν=1

N

(3ci
ν
cj
ν
 − δij) δ (x − x

ν) . (1)

The dynamic parameter of the density of the tensor order parameter is a nonconserved quantity, and therefore its evo-
lution obeys the relaxation equation [2]:

dδD
^

ij

dt
 = − ∑ 

α=1

3

τα
−1

 Bijkl
α

 δD
^

kl , (2)

with δ
^

Dij = '
^

ij − Dij
0 representing the deviation of the tensor parameter from its equilibrium value Dij

0.
The time correlation function of the tensor order parameter is determined in the form of integrals over the

volume of the system with the aid of the relation

gijkl (t) = 
1
V

 ∫∫ sδD
^

ij (x, t) δD
^

kl (x
 ′, 0)t dxdx ′ , (3)

in which the angular brackets denote equilibrium averaging. Since the equation of motion for the time correlation func-
tion gijkl(t) coincides with the equation of the temporal evolution of the dynamic quantity δDij(t), an equation for
gijkl(t) can be written in the form
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d
dt

 gijkl (t) = − ∑ 

α=1

3

τα
−1

 Bijmn
α

 gmnkl (t) . (4)

The structure of the tensor gijkl(t), because of the uniaxial symmetry of the medium and the fact that Dii = 0, is de-
termined by the expression

gijkl (t) = ∑ 

α=1

3

gα (t) Bijkl
α

 . (5)

The coefficients gα(t) obey three independent equations. The unknown correlation function has the form

gijkl (t) = ∑ 

α=1

3

gα (0) exp 

− 

t
τα




 Bijkl

α
 . (6)

The independent coefficients gα(0) define the static correlation function

gijkl (0) = 
1
V

 ∫∫ sδD
^

ij (x, 0) δD
^

kl (x
 ′, 0)t dxdx ′ , (7)

represented by the expression

gijkl (0) = ∑ 

α=1

3

gα (0) Bijkl
α

 . (8)

For the coefficients gα(t) in [2], formulas in the form of average values of the cosines and sines of the angle θ be-
tween the axis of a fragment of a DNA molecule and director are derived.

The times of relaxation of the orientational order τα are determined with the aid of the formulas

τα = 
gα (0)

Fα
 , (9)

where Fα are the independent coefficients of the tensor

Fijkl = ∑ 

α=1

3

FαBijkl
α

 . (10)

The tensor considered can be represented in terms of integrals of the following form:

Fijkl = 
1
V

 ∫ dx ∫ dx ′ ∫ 
0

t

dt exp (− εt) sI
^
ij
 D

 (x, t) I^kl
 D

 (x ′, 0)t ,

with ,
^

ij
 D (x, t) being a source in the equation of motion for microscopic tensor order parameters '

^
ij(x, t) [2].

Calculation of the tensor of the kinetic coefficients Fijkl is performed approximately with the aid of the Fok-
ker–Planck equation for a single-particle function of the distribution of orientational variables [2]. The result of calcu-
lation can be presented in the form

F1 = 
9nkT

4ξ
 1 − cos

4
 θ

_____

 ,   F2 = 

27nkT
2ξ

 cos
2
 θ

_____
 − cos

4
 θ

_____

 ,   F3 = 

9nkT
2ξ

 1 − 3cos
2
 θ

_____
 + 4cos

4
 θ

_____

 . (11)
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According to the Einstein formula, the coefficient of rotational friction ξ is expressed in terms of the coefficient of
rotational diffusion:

D = 
kT
ξ

 . (12)

On the other hand, the coefficient D can be calculated from the hydrodynamic formula [3]

D = 
kT

6ηΩδ
 . (13)

If the ratio of the length of the molecule to its diameter Lp/d = 100, then δ = 721 [3], whereas at Lp/d = 25,
δ = 62.8. For the DNA molecule, it is characteristic that Lp/d = 25, which corresponds to Lp = 500 A°  (persistent
length) and diameter d = 20 A° . We note that "hydrodynamic" formula (13) corresponds to the results of the statistical
model [4]. Thus, the times of relaxation τα have been determined on the basis of the statistical theory.

We recall [2] that τ1 is the time of relaxation of biaxial fluctuations, τ2 is the time of relaxation of longitu-
dinal fluctuations of ordering, and τ3 is the time of relaxation of transverse uniaxial fluctuations. It is of importance
that in transition to the homogeneous state (degenerate as concerns the orientation of the director) of a nematic liquid
crystal the quantity τ3 goes to infinity, and then the components of the ordering parameter D23 and D13 describe the
so-called Goldstone hydrodynamic modes. If the degeneracy considered is removed by external fields or by the action
of boundary conditions that create orientating forces, then τ3 is finite.

The formulas for τα can be presenred in the form [2]

τ1 = τ 
7 − 10P

__
2 + 3P

__
4

7 − 5P
__

2 − 2P
__

4

 ,   τ2 = τ 
7 + 10P

__
2 + 18P

__
4 − 35P

__
2

7 + 5P
__

2 − 12P
__

4

 ,   τ3 = τ 
7 + 5P

__
2 − 12P

__
4

14 + 5P
__

2 + 16P
__

4

 . (14)

Here τ = (6D)−1, whereas P
__

2 and P
__

4 are average values of the Legendre polynomials expressed in terms of cos θ:

cos
2
 θ

_____
 = 

1
3

 (1 + 2P
__

2) ,   cos
4
 θ

_____
 = 

1
35

 (7 + 20P
__

2 + 8P
__

4) . (15)

For subsequent calculations, the average values of cos2 θ
_____

 and cos4 θ
_____

 will be determined in the approximation of the
molecular field from the formulas

cos
2
 θ

_____
 = 

1
3

 (2s + 1) ,   cos
4
 θ

_____
 = 

1
3

 (2s + 1) − 
2
3b

 . (16)

Determination of the Viscosity Coefficients for the Ordered Phases of DNA Molecules. For statistical-me-
chanical description of the viscous properties of condensed systems in terms of the contemporary statistical nonequili-
brium theory [5] it is necessary to use an equation for the microscopic tensor of stresses τ̂ij(x). An expression for this
tensor was established earlier [1, 6] and it has the form

τ^ij (x) = − ∑ 

ν=1

N 






1
m

 pi
ν
pj
ν
 + 

1
2

 ∑ 

µ≠ν

N

Fi
νµ

Xj
 νµ







 δ (x − x

ν) . (17)

The specificity of concentrated solutions containing rod-like macromolecules leads to the necessity of introduc-
ing a simplified relation for the microscopic tensor of stresses. Such equations that take into account the orientational
degrees of freedom were suggested in [6–8]. In what follows, we will use the following expression:

τ^ij = 3kT 
p

2
 − 1

p
2
 + 1

 

cicj − 

1
3

 δij



 + 





p
2

p
2
 + 1

 ci 
∂U

∂cj

 − 
1

p
2
 + 1

 cj 
∂U

∂ci




 . (18)
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The single-particle microscopic tensor of stresses τ̂ij(x) will be represented as a sum of symmetrical and antisymmetri-
cal parts:

τ^ij (x) = τ^ij
s
 (x) + τ^ij

a
 (x) , (19)

with

τ^ij
s
 = 3kTχ 


cicj − 

1
3

 δij



 + 

1
2

 χ 



ci 

∂U

∂cj
 + cj 

∂U

∂ci




 , (20)

τ^ij
a
 = 

1
2

 



ci 

∂U
∂cj

 − cj 
∂U

∂ci




 , (21)

where χ = (p2 − 1)/(p2 + 1) is the quantity characterizing the degree of elongation of a molecule (of a fragment of a
DNA molecule). As the potential U we will use its expression in the approximation of the molecular field:

U = − 
3
2

 kTbs cos
2
 θ . (22)

Having calculated the derivatives of potential (22), we will write down the relationship

ci 
∂U

∂cj
 + cj 

∂U

∂ci
 = − 3kTbs (ciclnjnl + cjclninl) . (23)

Resorting to the formula below for the single-particle tensor order parameter:

d
^

ij = 
1
2

 (3cicj − δij) , (24)

we will represent (23) in the form

ci 
∂U

∂cj
 + cj 

∂U

∂ci
 = − 2kTbs (d^ilnlnj + d

^
jlninl + ninj) . (25)

The derivatives that determine the antisymmetric part of the tensor of stresses (21) are calculated in a similar way. As
a result, we obtain the relationship

ci 
∂U

∂cj
 − cj 

∂U

∂ci
 = − 2kTbs (d^ilnlnj − d

^
jlninl) . (26)

Based on Eqs. (25) and (26), we determine the dynamic value of the total tensor of stresses as the sum of its sym-
metrical and antisymmetrical parts:

τ^ij = 2kTχ ∑ 

ν=1

N

d
^

ij
νδ (x − x

ν) + kTbsχ 






 ∑ 

ν=1

N

d
^

il
νδ (x − x

ν) nlnj + ∑ 

ν=1

N

d
^

jl
νδ (x − x

ν) ninl







 +

+ kTbs 






 ∑ 

ν=1

N

d
^

il
νδ (x − x

ν) njnl − ∑ 

ν=1

N

d
^

jl
νδ (x − x

ν) ninl







 . (27)

In deriving Eq. (27), summation was made over the number of particles, with each term being multiplied by δ(x
− xν).
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Using the expression for the density of the dynamic value of the tensor order parameter:

D
^

ij (x) = ∑ 

ν=1

N

dij
νδ (x − x

ν) = ∑ 

ν=1

N
1
2

 (3ci
ν
cj
ν
 − δij) δ (x − x

ν) , (28)

we write down the density of the dynamic value of the microscopic tensor of stresses in the form

τ^ij (x) = 2kTχD
^

ij (x) − kTχbs (D^ ilnlnj + D
^

jlninl) − kTbs (D^ ilnlnj − D
^

jlninl) (29)

or

τ^ij (x) = 2kTχD
^

ij − kTbs (χ + 1) njnlD
^

li − kTbs (χ − 1)  ninlD
^

lj . (30)

As a result of nonequilibrium averaging (30), the value of the tensor of stresses is determined in terms of the
density of the tensor order parameters:

τij = 2kTDij − kTbs (χ + 1) njnlDli − kTbs (χ − 1) ninlDlj . (31)

However, the nonequilibrium average value of Dij consists of the sum of the equilibrium value Dij
0 and nonequilibrium

addition:

Dij = Dij
0
 + Kijkl βε

.
kl , (32)

where

ε
.
kl = 

∂ϑk

∂xl
 − emlkωm . (33)

The equilibrium value of the tensor order parameter

Dij
0
 = 

1
2

 sn (3ninj − δij) (34)

determines the equilibrium portion of the tensor of stresses τij
0. At the same time, the nonequilibrium addition

Kijkl βε
.
kl in the quantity Dij is proportional to the deformation-rate tensor. On substitution of this addition into ex-

pression (31), we establish a linear relationship between the nonlinear tensor of stresses and the tensor of deforma-
tion rates. The proportionality factors in the relation indicated form a tensor of the viscosity coefficients of the
media studied.

The constitutive equation for the tensor of viscous stresses is written in the form

τij − τij
0
 = [(χδij − bs (χ + 1) njnl) Klimn + (χδij − bs (χ − 1) ninl) Kljmn] ε

.
mn . (35)

We will denote the tensor of the viscosity coefficients by aijkl; then

aijkl = 2χKijkl − bs (χ + 1) njnmKmikl − bs (χ − 1) ninmKmjkl . (36)

In this approach, computation of the viscosity coefficients is reduced to calculation of the tensor Kijkl, which, accord-
ing to (32), determines the nonequilibrium contribution to the tensor order parameter. Relation (32) results from aver-
aging of the tensor parameter with the aid of the nonequilibrium distribution function [2, 5]:

f = f0 + Σ ∫dx ′ ∫ 
−∞

0

dt ′ exp [(ε + (1 − PM) iL^) t ′] f0 ĵ
m

 (x ′) Xm (x ′, t + t ′) . (37)
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Among the dynamic values of irreversible flows M ̂m there is a microscopic tensor of stresses, i.e.,

ĵ
 m

 = (1 − PM) τ^ij . (38)

In (37), the conjugated thermodynamic force Xm is equal to βε
.
ik. We note that f0 is the equilibrium function of distri-

bution and PM is the Mori projection operator. In what follows, for the homogeneous case considered, the Liouville
operator (1 − PM)/

^
 is reduced to a conventional operator /

^
, with the parameter ε → 0 after the thermodynamic limit-

ing transition.
An expression for the tensor Kijkl is derived by performing the above-mentioned nonequilibrium averaging

'
^

ij with the aid of the distribution function (37):

Kijkl = ∫ dx ′ ∫ 
0

∞

exp (ετ) sD
^

ij (x
 ′, τ) τ^kl (0)t dτ . (39)

However, according to (30), the microscopic tensor of stresses is expressed in terms of the dynamic value of the ten-
sor order parameter. Ultimately, computation of the tensor Kijkl is reduced to calculation of integrals of the time cor-
relation function of the tensor order parameter:

Kijkl = 






∫ dx ′ ∫ 

0

∞

exp (ετ) sD
^

ij (τ) D
^

mkt dτ






 kT (χδlm − bs (χ + 1) nlnm) +

+ 






∫ dx ′ ∫ 

0

∞

exp (ετ) sD
^

ij (τ) D
^

mlt dτ






 kT (χδkm − bs (χ − 1) nknm) . (40)

Calculation of the integrals considered is made on the basis of the explicit relation for the above-established time cor-
relation function:

gijkl (t) = ∑ 

α=1

3

gα (t) Bijkl
α

 ,   gα (t) = gα (0) exp 

− 

t
τα





(41)

As a result, the tensor Kijkl can be represented in the form

Kijkl = kT (χδlm − bs (χ + 1) nlnm) Σ gα (0) τα Bijmk
α

 + kT (χδkm − bs (χ − 1) nknm) Σ gα (0) ταBijml
α

 . (42)

To simplify the representation, in what follows we introduce the notation

bα = gα (0) τα . (43)

Substituting the tensor Kijkl (42) into the expression for the viscosity coefficients (36), we obtain the following
formula:

aijkl

kT
 = 4χ2

 Σ bαBijkl
α

 − 2bsχ (χ + 1) (nlnm Σ bαBijkl
α

 + nnnj Σ bαBijkl
α ) − 2bsχ (χ − 1) ×

× (nknm Σ bαBijml
α

 + ninn Σ bαBnjkl
α ) + bs

2
 (χ2

 − 1) (njnmnnnk Σ bαBimnl
α

 + + ninnnlnm Σ bαBnjmk
α ) +

 + bs
2
 (χ + 1)2 njnlnmnn Σ bαBimkn

α
 + bs

2
 (χ − 1)2 ninnnlnm Σ bαBnjml

α
 . (44)
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Using the explicit form of the Stratanovich matrices, we can represent the tensor ∑ bα βijkl
α  in (44) in the

form

Σ bαBijkl
α

 = b1Bijkl
(1)

 + b2Bijkl
(2)

 + b3Bijkl
(3)

 = 




b2

6
 − 

b1

2



 δijδkl + 

b1

2
 (δikδjl + δilδjk) +

+ 




b1

2
 − 

b2

2



 (δijnknl + δklninj) + 





b3

2
 − 

b1

2



 (δilnjnk + δiknjnl + δjlnink + δjkninl) + 





b1

2
 + 

3b2

2
 − 2b3




 ninjnknl .

Then the explicit expression for the tensor of the viscosity coefficients can be written as

aijkl

kT
 = 2χ2

 




b2

3
 − b1




 δijδkl + 2χ2

b1δikδjl + 2χ2
b1δilδjk + 2χ2

 



b1 − b2 




1 − 

2bs

3







 (δijnlnk + δklninj) +

+ 2 



χ2

 (b3 − b1) + 




bs
2

4
 (χ+ 1)2 − bsχ (χ + 1)




 b3




 δiknjnl + 2 (χ2

 (b3 − b1) + (bs
2
 (χ2

 − 1) − bsχ2) b3) ×

× (δilnjnk + δjkninl) + 2 



χ2

 (b3 − b1) + 




bs
2

4
 (χ − 1)2 − bsχ (χ − 1)




 b3)

 ×

× δjlnink + 2χ2
 



(b1 + 3b2 − 4b3) + bs

2
 




4b2

3
 − b3




 − 4bs (b2 − b3)




 ninjnknl . (45)

We will take into consideration that for a uniaxial centrosymmetrical medium the tensor aijkl has the following
structure [2]:

aijkl = a1δijδkl + a2δikδjl + a3δjlδjk + a4 (δijnknl + δklninj) +

+ a5δiknjnl + a6 (δjlnjnk + δjkninl) + a7δjlnink + a8ninjnknl . (46)

On the basis of relation (45) we derive formulas for the viscosity coefficients:

a1 = 2kTχ2
 




b2

3
 − b1




 ,   a2 = a3 = 2kTχ2

b1 ,   a4 = 2kTχ2
 



b1 − b2 




1 − 

2bs

3







 ,

a5 = 2kT 



χ2

 (b3 − b1) + 



bs

2

4
 (χ + 1)2 − bsχ (χ + 1)




 b3




 ,   a6 = 2kT χ

2
 (b3 − b1) + (bs

2
 (χ2

 − 1) − bsχ2) b3

 ,

a7 = 2kT 



χ2

 (b3 − b1) + 



bs

2

4
 (χ − 1)2 − bsχ (χ − 1)




 b3




 ,

a8 = 2χ2
 



(b1 + 3b2 − 4b3) + bs

2
 




4b2

3
 − b3




 − 4bs (b2 − b3)




 .

(47)

In view of the lack of any data on the viscosity and kinetic parameters of the systems investigated, there is a pressing
need to determine the indicated quantities on the basis of the theory developed.

To estimate the coefficients of rotational diffusion, we will use hydrodynamic formula (13). The volume of a
fragment of the molecule Ω = πr2Lp is calculated from the persistent length and Lp = 500 A°  and the cross-section ra-
dius r = 10 A° . As a result, we obtain Ω = 1.571⋅10−25 m3. Since the form-factor is equal to 62.8 and water viscosity
is η = 10−3 Pa⋅sec, then at T = 300 K and D = 1.099⋅105 sec−1. The relaxation times are calculated from formulas
(14), where the average values of the Legendre polynomials are determined with the aid of formulas (15) and (16).
Then
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τ1 = 
1 − s − 

1
b

4D 

1 − s + 

1
b




 ,   τ2 = 




1 + s − 2s

2
 − 

3
b



 b

12D
 ,   τ3 = 

1

2bD 

2 + s − 

4
b




 .

At s = 0.5, we obtain that τ1 = 0.865⋅10−6 sec, τ2 = 1.169⋅10−6 sec, and τ3 = 0.619⋅10−6 sec. Single-particle expres-
sions for gα are written on the basis of [2] in the form

g1 = 
9

16
 n sin

4
 θ ,   g2 = 

27
8

 n cos
4
 θ

_____
 − cos

2
 θ

_____

 ,   g3 = 

9
4

 n cos
2
 θ

_____
 − cos

4
 θ

_____



or subject to (16) for cos2 θ
_____

 and cos4 θ
_____

 in the form

g1 = 
3n
8

 

1 − s − 

1
b



 ,   g2 = 

3n
4

 

1 + s − 2s

2
 − 

3
b



 ,   g3 = 

3n
2b

 .

For numerical estimations we assume that b = 4.5415 and s = 0.5. The density of the number of DNA mole-
cule fragments will be calculated from the formula n = ρ ⁄ m. Here m is the mass of a fragment of the molecule and
ρ = (10–300) kg/m3 is its mass density. At the same time, the mass of the molecule fragment, the length of which is
equal to the persistent one, is determined as m = 147mb, where mb is the mass of a pair of nitrogen bases, and 147
is their number layed out on the persistent length. Since mb = (615⋅10−3)/(6.02⋅1023) = 1.02⋅10−24 kg (615 g is the
molecular mass, 6.02⋅1023 is the Avogadro number), as a result m = 1.5⋅10−22 kg.

In what follows, the estimation will be made at n = 150/(1.5⋅10−22) = 1024 m−3 assuming that ρ = 150
kg/m3. As a result, we obtain that g1 = 0.1033⋅1024 m−3, g2 = 0.2546⋅1024 m−3, and g3 = 0.3303⋅1024 m−3 and the
parameters bα from (43) are equal to b1 = 0.8936⋅1017, b2 = 0.3479⋅1018, and b3 = 0.2044⋅1018. For the ordered phase
of DNA molecules, fragments of length of the order of the persistent one Lp C 500 A°  with cross-sectional diameter 20
A°  are considered; therefore p = 25 and χ can be assumed equal to unity. For these data at kT = 4.14⋅10−21 (T = 300
K) the viscosity coefficients can be estimated from expressions (47):

a1 = 2.203⋅10
−4

 Pa⋅sec ,   a2 = a3 = 7.399⋅10
−4

 Pa⋅sec ,   a4 = 22.200⋅10
−4

 Pa⋅sec ,

a5 = 19.930⋅10
−4

 Pa⋅sec ,   a6 = − 28.910⋅10
−4

 Pa⋅sec ,   a7 = 9.525⋅10
−4

 Pa⋅sec ,   a8 = 28.97⋅10
−4

 Pa⋅sec .

The viscosity coefficients ai allow one to calculate the so-called Leslie coefficients:

α1 = a8 ,   α2 = a6 − a5 ,   α3 = a7 − a6 ,   α4 = a2 + a3 ,

α5 = a5 + a6 ,   α6 = a6 + a7 ,   γ1 = α3 − α2 ,   γ2 = α2 + α3 .

In order of magnitude, the viscosity coefficients are close to the shear-viscosity coefficient of water, which is
a solvent containing fragments of a DNA molecule. The negative value of a6 is due to the approximate character of
expressions for the microscopic tensor of stresses and correlator of the tensor order parameter. It is essential that vis-
cosity be an anisotropic characteristic of the medium.

NOTATION

Bijkl
α  (α = 1, 2, 3), Stratanovich matrices (see, e.g., [2]); b, quantity characterizing the intensity of interaction

of a selected molecule with its surroundings; ci
ν, projection of a unit vector cν directed along the axis of the DNA

molecule fragment numbered ν onto the xi axis; D, coefficient of rotational diffusion; emlk, Levi-Civita tensor; Fi
 νµ, ith

projection of the force of interaction of two particles numbered ν and µ; k, Boltzmann constant; N, number of mole-
cule fragments in the system; n = N/V, density of the number of fragments; ni, director; p = Lp

 ⁄ d, ratio of the mole-
cule length Lp to its diameter d; pi

ν, projection of the pulse of a particle numbered ν onto the xi axis; s, scalar
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ordering parameter of ordering; T, absolute temperature; t, time; U, single-particle potential energy of a molecule; V,
volume of the system; Xj

 νµ, projection of the vector that connects the centers of mass of two particles on the xj axis;
xν, radius-vector of the center of mass of the fragment of the DNA molecule numbered ν; β = (kT)−1; δ. form-factor,
dimensionless quantity, depending on the ratio of Lp to d; δ(x − xν), Dirac delta function; δij, Kronecker symbol; ε

.
kl,

tensor of deformation rates; η, viscosity of the medium; ξ, coefficient of rotational friction; τα, relaxation time; ϑk,
flow velocity of the medium; Ω, volume of the DNA molecule fragment the length of which is equal to its persistent
length; ωm, mean angular velocity of the proper rotation of the medium molecules. Subscripts: a, antisymmetric part;
b, bases; p, persistent; s, symmetrical part;  ̂  , microscopic value. Superscripts: over bar,  average value; ′, variables
with respect to which integration is made.
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